Наш Казанский Рыболовный сайт

Главная | Регистрация | Вход
Суббота, 27.04.24, 02:36
Приветствую Вас Гость | RSS
[ 0 Личные сообщения() · Новые сообщения · Участники · Правила форума · Поиск · RSS ]
  • Страница 1 из 2
  • 1
  • 2
  • »
Модератор форума: niaz  
Форум » Непознанное рядом » Далекие миры » Далекий космос (иные миры)
Далекий космос
niazДата: Вторник, 26.05.09, 21:16 | Сообщение # 1
Супер Рыболов
Группа: Администраторы
Сообщений: 37823
Статус: на рыбалке
Материал из Википедии — свободной энциклопедии

Объект глубокого космоса:

пекулярная спиральная галактика ESO 510-G13 в созвездии Гидры. Видно, что форма её пылевого диска сильно искажена. Эта галактика находится от нас на расстоянии 170 млн св. лет, а её диаметр — около 100 тыс. св. лет.


Чудес не бывает: из одной мухи можно сделать только одного слона.




Завершил строительство: Офисный Центр "Капитал"
 
niazДата: Вторник, 26.05.09, 21:17 | Сообщение # 2
Супер Рыболов
Группа: Администраторы
Сообщений: 37823
Статус: на рыбалке

Самые далёкие галактики. Фотография получена орбитальным телескопом «Хаббл» в ходе миссии Hubble Deep Field — снимок такой точности получить с Земли невозможно.


Чудес не бывает: из одной мухи можно сделать только одного слона.




Завершил строительство: Офисный Центр "Капитал"
 
niazДата: Вторник, 26.05.09, 21:18 | Сообщение # 3
Супер Рыболов
Группа: Администраторы
Сообщений: 37823
Статус: на рыбалке
Объект глубокого космоса — термин, используемый астрономами-любителями для обозначения, главным образом, слабых астрономических объектов за пределами Солнечной системы, таких как звёздные скопления, туманности и галактики. Эти объекты находятся на расстоянии от сотен до миллиардов световых лет от Земли.

Практически все скопления и туманности находятся в галактиках, и есть лишь несколько галактик, доступных для наблюдения невооружённым глазом. В порядке увеличения расстояния это: Млечный Путь, Большое Магелланово Облако (~ 160 000 св. лет), Малое Магелланово Облако (~ 200 000 св. лет), Туманность Андромеды (~ 2,5 млн св. лет).


Чудес не бывает: из одной мухи можно сделать только одного слона.




Завершил строительство: Офисный Центр "Капитал"
 
niazДата: Вторник, 26.05.09, 21:19 | Сообщение # 4
Супер Рыболов
Группа: Администраторы
Сообщений: 37823
Статус: на рыбалке
Виды объектов глубокого космоса:

Звёздное скопление
Рассеянное звёздное скопление
Шаровое звёздное скопление
Туманность
Светлая туманность
Эмиссионная туманность
Отражательная туманность
Остаток сверхновой
Планетарная туманность
Тёмная туманность
Галактика
Спиральная галактика
Эллиптическая галактика
Неправильная галактика
Пекулярная галактика
Квазар

Существуют каталоги таких объектов. Так, есть каталог Мессье, включающий в себя описание 110 объектов, или более полный Новый общий каталог, из почти 8000 объектов, или более специализированный Общий каталог галактик Уппсальской обсерватории. Подборки объектов из этих каталогов используются любителями для проверки их наблюдательных способностей и возможностей их астрономической техники. Например, каждый год проходит «Марафон Мессье», в котором участники за одну ночь должны увидеть на небе все 110 объектов этого каталога. Более сложным является конкурс «400 Гершеля», он предназначен для более мощных телескопов.

Звёздное скопление

Рассеянное звёздное скопление (англ. Open cluster) — звёздное скопление, в котором, в отличие от шарового, содержится сравнительно немного звёзд, и часто имеющее неправильную форму. В нашей и подобных ей галактиках, рассеянные скопления являются коллективными членами и входят в плоскую подсистему.

У молодых рассеянных скоплений, ассоциирующихся со спиральными рукавами галактики, характерный состав. В них редко встречаются красные и жёлтые гиганты и совершенно нет красных и жёлтых сверхгигантов. В то же время белые и голубые гиганты, сами по себе являющиеся редкими видами звёзд, в рассеянных скоплениях встречаются гораздо чаще. Также, в рассеянных скоплениях чаще, чем в других местах Галактики, можно встретить и ещё более редкие звёзды — белые и голубые сверхгиганты, то есть, звёзды чрезвычайно высокой светимости и температуры, излучающие в сотни тысяч и даже миллионы раз больше, чем наше Солнце.

Шаровое звёздное скопление — звёздное скопление, отличающееся от рассеянного скопления бо́льшим количеством звёзд и чётко очерченной симметричной формой с увеличением концентрации звёзд к центру скопления.

Пространственные концентрации звёзд в центральных областях шаровых скоплений ~ 10³-104 пк-3 (в окрестностях Солнца пространственная концентрация звёзд составляет ~ 0,13 пк-3), количество звёзд ~104-106. Диаметры шаровых скоплений составляют 20-60 пк, массы — 104-106 солнечных.

[править]
Шаровые скопления нашей Галактики

Рис. 2. Диаграмма цвет-видимая звёздная величина шарового звёздного скопления M3.

Шаровые скопления являются коллективными членами нашей Галактики и входят в её сферическую подсистему: они обращаются вокруг центра масс Галактики по сильно вытянутым орбитам со скоростями 200 км/с и периодом обращения 108-109 лет. Возраст шаровых скоплений нашей Галактики приближается к её возрасту, что подтверждается их диаграммами Герцшпрунга — Рассела, содержащих характерный обрыв главной последовательности с голубой стороны, указывающий на превращение массивных звёзд — членов скопления в красных гигантов (см. Рис.2).

В отличие от рассеянных скоплений и звёздных ассоциаций, межзвёздная среда шаровых скоплений содержат мало газа: этот факт объясняется, с одной стороны низкой параболической скоростью, составляющей 10-30 км/с и, с другой стороны, их большим возрастом; дополнительным фактором, судя по всему, является и периодическое прохождение в ходе обращения вокруг центра нашей Галактики через её плоскость, в которой концентрируются газовые облака, что способствует «выметанию» собственного газа при таких прохождениях.

Туманность

Диффузная (светлая) туманность — в астрономии, общий термин, используемый для обозначения излучающих свет туманностей. Три типа диффузных туманностей — это отражательная туманность, эмиссионная туманность и остатки сверхновой. Диффузным туманностям противопоставляют недиффузные тёмные туманности, то есть туманности, молекулы которых сильно рассредоточены.

Эмиссионная туманность — облако ионизированного газа (плазмы), излучающее в видимом цветовом диапазоне спектра. Ионизация происходит за счёт высокоэнергетических фотонов, излучаемых ближайшей горячей звездой. Различают несколько видов эмиссионных туманностей, среди них области H II, в которых происходит формирование новых звёзд, и молодые, массивные звезды являются источниками ионизирующих фотонов; а также планетарные туманности, в которых умирающая звезда сбросила свои верхние слои, обнажив горячее ядро, ионизирующее их.

Остаток сверхновой (англ. SuperNova Remnant, SNR) — газопылевое образование, результат произошедшего много десятков или сотен лет назад катастрофического взрыва звезды и превращения её в сверхновую. Во время взрыва оболочка сверхновой разлетается во все стороны, образуя расширяющуюся с огромной скоростью ударную волну, которая и формирует остаток сверхновой. Остаток состоит из выброшенного взрывом звёздного материала и поглощаемого ударной волной межзвёздного вещества.

Существует два возможных сценария рождения сверхновой звезды:
массивная звезда, исчерпав своё топливо, прекращает производство термоядерной энергии, что влечёт коллапс звезды под действием силы собственной гравитации и её превращение в нейтронную звезду или чёрную дыру;
белый карлик, накапливая вещество звезды-компаньона (явление аккреции), достигает критической массы и становится сверхновой в термоядерной вспышке.

крабовидная туманность (Крабовидная туманность — расширяющееся газовое облако, образованное вспышкой сверхновой в 1054 г.)

В обоих случаях взрыв сверхновой выбрасывает в окружающее пространство всё или почти всё вещество из внешних слоёв звезды, со скоростью около 1 % от скорости света, что соответствует порядка 3000 км/сек. Когда выброшенное вещество сталкивается с околозвёздным или межзвёздным газом, формируется ударная волна, превращающая газ в горячую плазму, разогревая его до температуры порядка 10 миллионов К.

Остаток сверхновой Кеплера, SN 1604.

Вероятно самый красивый и лучше всего исследованный молодой остаток образован сверхновой SN 1987A в Большом Магеллановом Облаке, вспыхнувшей в 1987 г. Другие хорошо известные остатки сверхновых, это Крабовидная туманность, остаток относительно недавнего взрыва (1054 год), остаток сверхновой Тихо (SN 1572), получившей имя в честь Тихо Браге, который наблюдал и зафиксировал её первоначальную яркость сразу после вспышки в 1572 г., а также остаток сверхновой Кеплера (SN 1604), названной в честь Иоганна Кеплера.

Остаток сверхновой 1987A

Стадии эволюции

Остаток сверхновой во время своего развития проходит через следующие стадии:
Свободное расширение выброшенного вещества, продолжается до тех пор, пока масса поглощённого ударной волной межзвёздного вещества значительно не превысит массу выброшенного звёздного материала. Продолжительность стадии от десятков до нескольких сотен лет, в зависимости от плотности окружающей газовой среды.
Существенное замедление ударной волны, возникновение обратной (внутренней) ударной волны, со временем достигающей центра остатка. Остаток входит в фазу Седова-Тейлора, хорошо описываемую автомодельным аналитическим решением. Столкновения ударных волн раскалённого газа сопровождаются мощным рентгеновским излучением.
Охлаждение внешней оболочки остатка и формирование тонкой (< 1 пк) и плотной (1-100 миллионов атомов м-3) оболочки вокруг очень горячей (несколько миллионов К) внутренней полости. Наступление фазы радиационного охлаждения. Оболочка остатка становится доступной для наблюдения в видимом спектре благодаря рекомбинации ионизированных атомов водорода и кислорода.
Охлаждение внутренней полости остатка. Плотная оболочка продолжает расширяться под влиянием собственного момента импульса (инерции). На этой стадии остаток сверхновой отчётливо «виден» в дипазоне излучения атомов нейтрального водорода.
Слияние с окружающим межзвёздным веществом. Примерно через миллион лет скорость расширения оболочки остатка замедлится до среднестатистических скоростей в окружающем пространстве, материя остатка сольётся с бурным потоком движения вещества, привнеся в него оставшуюся у неё кинетическую энергию.

Планета́рная тума́нность — астрономический объект, состоящий из ионизированной газовой оболочки и центральной звезды, белого карлика. Планетарные туманности образуются при сбросе внешних слоёв (оболочек) красных гигантов и сверхгигантов с массой 2.5—8 солнечных на завершающей стадии их эволюции. Планетарная туманность — быстропротекающее (по астрономическим меркам) явление, длящееся всего несколько десятков тысяч лет, при продолжительности жизни звезды-предка в несколько миллиардов лет. В настоящее время в нашей галактике известно около 1500 планетарных туманностей.

Процесс образования планетарных туманностей, наряду с вспышками сверхновых, играет важную роль в химической эволюции галактик, выбрасывая в межзвёздное пространство материал, обогащённый тяжёлыми элементами — продуктами звёздного нуклеосинтеза (в астрономии тяжёлыми считаются все элементы, за исключением продуктов первичного нуклеосинтеза Большого взрыва — водорода и гелия, такие как углерод, азот, кислород и кальций).

NGC 6543, Туманность Кошачий Глаз — внутренняя область, изображение в псевдоцвете (красный — Hα; синий — нейтральный кислород, 630 нм; зелёный — ионизированный азот, 658.4 нм).

В последние годы при помощи снимков, полученных космическим телескопом Хаббл, удалось выяснить, что многие планетарные туманности имеют очень сложную и своеобразную структуру. Несмотря на то, что приблизительно пятая часть из них имеет околосферическую форму, большинство не обладает какой бы то ни было сферической симметрией. Механизмы, благодаря которым возможно образование такого многообразия форм, остаются на сегодняшний день до конца не выясненными. Считается, что большую роль в этом могут играть взаимодействие звёздного ветра и двойных звёзд, магнитного поля и межзвёздной среды.


Чудес не бывает: из одной мухи можно сделать только одного слона.




Завершил строительство: Офисный Центр "Капитал"
 
niazДата: Вторник, 26.05.09, 21:37 | Сообщение # 5
Супер Рыболов
Группа: Администраторы
Сообщений: 37823
Статус: на рыбалке
История исследований

Туманность Гантель в условных цветах

Планетарные туманности в большинстве своём представляют собой тусклые объекты и, как правило, не видны невооружённым глазом. Первой открытой планетарной туманностью была туманность Гантель в созвездии Лисички: Шарль Мессье, занимавшийся поиском комет, при составлении своего каталога туманностей (неподвижных объектов, похожих при наблюдении неба на кометы) в 1764 году занёс её в каталог под номером M27. В 1784 г. Уильям Гершель, первооткрыватель Урана, при составлении своего каталога выделил их в отдельный класс туманностей (class IV nebulae)* и предложил для них термин «планетарная туманность» из-за их видимого сходства с диском Урана.

Необычность природы планетарных туманностей обнаружилась в середине XIX века, с началом использования в наблюдениях метода спектроскопии. Уильям Хаггинс стал первым астрономом, получившим спектры планетарных туманностей — объектов, выделявшихся своей необычностью:
«Одними из самых загадочных из этих замечательных объектов являются те, которые при телескопическом наблюдении имеют вид круглых или слегка овальных дисков. … Замечателен и их зеленовато-голубой цвет, чрезвычайно редкий для одиночных звёзд. Кроме того, в этих туманностях нет признаков центрального сгущения. По этим признакам планетарные туманности резко выделяются как объекты, которым присущи свойства, совершенно отличающиеся от свойств Солнца и неподвижных звёзд. Из этих соображений, а также благодаря их яркости, я избрал эти туманности как наиболее подходящие для спектроскопического исследования»*.

При изучении Хаггинсом спектров туманностей NGC 6543 (Кошачий Глаз), M27 (Гантель), M57 (кольцевая туманность в Лире) и ряда других, оказалось, что их спектр чрезвычайно отличается от спектров звёзд: все полученные к тому времени спектры звёзд являлись спектрами поглощения (непрерывный спектр с большим количеством тёмных линий), в то время как спектры планетарных туманностей оказались эмиссионными спектрами с небольшим количеством эмиссионных линий, что указывало на их природу, в корне отличающуюся от природы звёзд:
Несомненно, что туманности 37 H IV (NGC 3242), Struve 6 (NGC 6572), 73 H IV (NGC 6826), 1 H IV (NGC 7009), 57 M, 18 H. IV (NGC 7662) и 27 M не могут более считаться скоплениями звёзд того же типа, к которым относятся неподвижные звёзды и наше Солнце. <…> эти объекты обладают особой и отличной от них структурой <…> мы, по всей вероятности, должны считать эти объекты огромными массами светящегося газа или пара*.

Другой проблемой был химический состав планетарных туманностей: Хаггинс сравнением с эталонными спектрами сумел идентифициировать линии азота и водорода, однако самая яркая из линий с длиной волны 500.7 нм не наблюдалась в спектрах известных тогда химических элементов. Было выдвинуто предположение, что эта линия, соответствует неизвестному элементу. Ему заранее дали название небулий — по аналогии с идеей, приведшей к открытию гелия при спектральном анализе Солнца в 1868 году.

Предположения об открытии нового элемента небулия не подтвердились. В начале XX века Генри Рассел выдвинул гипотезу о том, что линия на 500.7 нм соответствует не новому элементу, а старому элементу в неизвестных условиях.

В 20-х годах XX века было показано, что в очень разрежённых газах атомы и ионы могут переходить в возбуждённые метастабильные состояния, которые при более высоких плотностях из-за соударений частиц не могут достаточно долго существовать. В 1927 г. Боуэн идентифицировал линию небулия 500.7 нм как возникающую при переходе из метастабильного состояния в основное дважды ионизированного атома кислорода (OIII)*. Спектральные линии такого типа, наблюдаемые только при чрезвычайно низких плотностях, называют запрещёнными линиями. Таким образом, спектроскопические наблюдения дали возможность оценить верхний предел плотности газа туманностей. Вместе с тем, спектры планетарных туманностей, полученных на щелевых спектрометрах, показали «изломанность» и расщепление линий вследствие допплеровских сдвигов излучающих областей туманности, движущихся с различными скоростями, что позволило оценить скорости расширения планетарных туманностей в 20-40 км/с.

Несмотря на достаточно подробное понимание строения, состава и механизма излучения планетарных туманностей, вопрос об их происхождении оставался открытым до середины 50-х годов XX века, пока И. С. Шкловский не обратил внимание, что если проэкстраполировать параметры планетарных туманностей к моменту начала их расширения, то получившийся набор параметров совпадает со свойствами атмосфер красных гигантов, а свойства их ядер — со свойствами горячих белых карликов *,*. В настоящее время эта теория происхождения планетарных туманностей подтверждена многочисленными наблюдениями и расчётами.

К концу XX века совершенствование технологий позволило более детально изучить планетарные туманности. Космические телескопы позволили исследовать их спектры за пределами видимого диапазона, что невозможно было сделать раньше, проводя наблюдения с поверхности Земли. Наблюдения в инфракрасном и ультрафиолетовом диапазонах волн дали новую, гораздо более точную оценку температуры, плотности и химического состава планетарных туманностей. Применение технологии ПЗС-матриц позволило проводить анализ существенно менее чётких спектральных линий. Использование космического телескопа Хаббл раскрыло чрезвычайно сложную структуру планетарных туманностей, ранее считавшихся простыми и однородными.

Принято считать, что планетарные туманности имеют спектральный класс P, хотя такое обозначение редко применяется на практике.

Происхождение

Строение симметричной планетарной туманности. Быстрый звёздный ветер (голубые стрелки) горячего белого карлика — ядра звезды(в центре), сталкиваясь со сброшенной оболочкой — медленным звёздным ветром красного гиганта (красные стрелки), создаёт плотную оболочку (голубого цвета), светящуюся под воздействием ультрафиолетового излучения ядра.

Планетарные туманности представляют собой заключительный этап эволюции для многих звёзд. Наше Солнце представляет собой звезду средней величины, и лишь небольшое количество звёзд превосходят его по массе. Звёзды с массой в несколько раз больше солнечной на заключительном этапе существования превращаются в сверхновые. Звёзды средней и малой массы в конце эволюционного пути создают планетарные туманности.

Типичная звезда с массой в несколько раз меньше солнечной светит на протяжении большей части своей жизни благодаря реакциям термоядерного синтеза гелия из водорода в её ядре (часто вместо термина «термоядерный синтез» употребляется термин «горение», в данном случае — горение водорода). Энергия, высвобождаемая в этих реакциях, удерживает звезду от коллапса под силой собственного притяжения, делая её тем самым стабильной.

По прошествии нескольких миллиардов лет запас водорода иссякает, и энергии становится недостаточно для сдерживания внешних слоёв звезды. Ядро начинает сжиматься и нагреваться. В настоящее время температура ядра Солнца составляет приблизительно 15 млн К, но после того, как запас водорода будет исчерпан, сжатие ядра заставит температуру подняться до отметки в 100 млн К. При этом внешние слои охлаждаются и значительно увеличиваются в размерах из-за очень высокой температуры ядра. Звезда превращается в красный гигант. Ядро на этом этапе продолжает сжиматься и нагреваться; при достижении температуры в 100 млн К начинается процесс синтеза углерода и кислорода из гелия.

Возобновление термоядерных реакций позволяет прекратиться дальнейшему сжатию ядра. Выгорающий гелий вскоре создаёт инертное ядро, состоящее из углерода и кислорода, окружённое оболочкой из горящего гелия. Термоядерные реакции с участием гелия очень чувствительны к температуре. Скорость протекания реакции пропорциональна T40, то есть увеличение температуры всего на 2 % приведёт к удвоению скорости протекания реакции. Это делает звезду очень нестабильной: малый прирост температуры вызывает быстрое увеличение скорости хода реакций, повышая выделение энергии, что, в свою очередь, заставляет увеличиваться температуру. Верхние слои горящего гелия начинают быстро расширяться, температура понижается, реакция замедляется. Всё это может быть причиной мощных пульсаций, иногда достаточно сильных, чтобы выбросить значительную часть атмосферы звезды в космическое пространство.

Выброшенный газ формирует расширяющуюся оболочку вокруг обнажившегося ядра звезды. По мере того, как всё большая часть атмосферы отделяется от звезды, проявляются всё более и более глубокие слои с более высокими температурами. При достижении обнажённой поверхностью (фотосферой звезды) температуры в 30 000 К энергия испускаемых ультрафиолетовых фотонов становится достаточной для ионизации атомов в выброшенном веществе, что заставляет его светиться. Таким образом, облако становится планетарной туманностью.

Продолжительность жизни

Компьютерное моделирование формирования планетарной туманности из звезды с диском неправильной формы, иллюстрирующее, как малая начальная асимметрия может в результате привести к образованию объекта со сложной структурой.

Вещество планетарной туманности разлетается от центральной звезды со скоростью в несколько десятков километров в секунду. В то же время, по мере истечения вещества центральная звезда остывает, излучая остатки энергии; термоядерные реакции прекращаются, так как звезда теперь не обладает достаточной массой для поддержания температуры, требуемой для синтеза углерода и кислорода. В конце концов, звезда остынет настолько, что перестанет излучать достаточно ультрафиолета для ионизации отдалившейся газовой оболочки. Звезда становится белым карликом, а газовое облако рекомбинирует, становясь невидимым. Для типичной планетарной туманности время от образования до рекомбинации составляет 10 000 лет.

Галактические переработчики

Планетарные туманности играют значительную роль в эволюции галактик. Ранняя Вселенная состояла в основном из водорода и гелия, но со временем в результате термоядерного синтеза в звёздах образовались более тяжёлые элементы. Таким образом, вещество планетарных туманностей имеет высокое содержание углерода, азота и кислорода, а по мере расширения и проникновения в межзвёздное пространство оно обогащает его этими тяжёлыми элементами, в общем называемыми астрономами металлами.

Последующие поколения звёзд, формирующиеся из межзвёздного вещества, будут содержать большее начальное количество тяжёлых элементов; хотя их присутствие в составе звёзд остаётся незначительным, они ощутимо влияют на их эволюцию. Звёзды, сформировавшиеся вскоре после образования Вселенной, содержат относительно малые количества металлов — их относят к звёздам II типа. Звёзды, обогащённые тяжёлыми элементами, принадлежат к звёздам I типа (см. Звёздное население).

Характеристики

Физические характеристики

Типичная планетарная туманность имеет среднюю протяжённость в один световой год и состоит из сильно разреженного газа плотностью около 1000 частиц на см³, что пренебрежимо мало в сравнении, например, с плотностью атмосферы Земли, но примерно в 10-100 раз больше, чем плотность межпланетного пространства на расстоянии орбиты Земли от Солнца. Молодые планетарные туманности имеют наибольшую плотность, иногда достигающую 106 частиц на см³. По мере старения туманностей их расширение приводит к уменьшению плотности.

Излучение центральной звезды нагревает газы до температур порядка 10 000 К. Парадоксально, что температура газа нередко повышается с увеличением расстояния от центральной звезды. Это происходит по той причине, что чем большей энергией обладает фотон, тем менее вероятно, что он будет поглощён. Поэтому во внутренних областях туманности поглощаются малоэнергетические фотоны, а оставшиеся, обладающие высокой энергией, поглощаются во внешних областях, вызывая рост их температуры.

Туманности можно разделить на бедные материей и бедные излучением. Согласно этой терминологии, в первом случае туманность не обладает достаточным количеством материи для поглощения всех ультрафиолетовых фотонов, излучаемых звездой. Поэтому видимая туманность полностью ионизирована. Во втором же случае центральная звезда испускает недостаточно ультрафиолетовых фотонов, чтобы ионизировать весь окружающий газ, и ионизационный фронт переходит в нейтральное межзвёздное пространство.

Так как бо́льшая часть газа планетарной туманности ионизирована (то есть является плазмой), значительный эффект на её структуру оказывает действие магнитных полей, вызывая такие феномены, как волокнистость и нестабильность плазмы.

Количество и распределение

На сегодняшний день в нашей галактике, состоящей из 200 миллиардов звёзд, известно 1500 планетарных туманностей. Их краткая по сравнению со звёздной продолжительность жизни является причиной их малого числа. В основном, все они лежат в плоскости Млечного Пути, причём большей частью сосредоточившись вблизи центра галактики, и практически не наблюдаются в звёздных скоплениях.

Использование ПЗС-матриц вместо фотоплёнки в астрономических исследованиях позволило значительно расширить список известных планетарных туманностей.

Структура

Биполярная планетарная туманность

Большинство планетарных туманностей симметричны и имеют почти сферический вид, что не мешает им иметь множество очень сложных форм. Приблизительно 10 % планетарных туманностей практически биполярны, и лишь малое их число асимметричны. Известна даже прямоугольная планетарная туманность. Причины такого разнообразия форм до конца не выяснены, но считается, что большую роль могут играть гравитационные взаимодействия звёзд в двойных системах. По другой версии, имеющиеся планеты нарушают равномерное растекание материи при образовании туманности. В январе 2005 года американские астрономы объявили о первом обнаружении магнитных полей вокруг центральных звёзд двух планетарных туманностей, а затем выдвинули предположение, что именно они частично или полностью ответственны за создание формы этих туманностей. Существенная роль магнитных полей в планетарных туманностях была предсказана Григором Гурзадяном ещё в 1960-ые годы (см. например Гурзадян Г. А., 1993 и ссылки там). Есть также предположение, что биполярная форма может быть обусловлена взаимодействием ударных волн от распространения фронта детонации в слое гелия на поверхности формирующегося белого карлика (например, в туманностях Кошачий Глаз, Песочные Часы, Муравей).

Текущие вопросы в изучении планетарных туманностей

Одна из проблем в изучении планетарных туманностей — это точное определение расстояния до них. Для некоторых близлежащих планетарных туманностей возможно вычислить удалённость от нас, используя измеренный параллакс расширения: снимки с высоким разрешением, полученные несколько лет назад, демонстрируют расширение туманности перпендикулярно к лучу зрения, а спектроскопический анализ Доплеровского смещения даст возможность вычислить скорость расширения вдоль луча зрения. Сравнение углового расширения с полученной скоростью расширения сделает возможным вычисление расстояния до туманности.

Существование такого разнообразия форм туманностей является темой жарких дискуссий. Широко распространено мнение, что причиной этому может быть взаимодействие между веществом, удаляющимся от звезды с различными скоростями. Некоторые астрономы считают, что двойные звёздные системы ответственны, по крайней мере, за наиболее сложные очертания планетарных туманностей. Недавние исследования подтвердили наличие у нескольких планетарных туманностей мощных магнитных полей, предположения о чём уже неоднократно выдвигались. Магнитные взаимодействия с ионизированным газом также могут играть некоторую роль в становлении формы некоторых из них.

На данный момент существуют две различных методики обнаружения металлов в туманности, основывающиеся на различных типах спектральных линий. Иногда эти два метода дают совершенно непохожие результаты. Некоторые астрономы склонны объяснять это наличием слабых флуктуаций температуры в пределах планетарной туманности. Другие полагают, что различия в наблюдениях слишком разительны, чтобы объяснить их при помощи температурных эффектов. Они выдвигают предположения о существовании холодных сгустков, содержащих очень малое количество водорода. Однако сгустки, наличие которых, по их мнению, способно объяснить разницу в оценке количества металлов, ни разу не наблюдались.

Тёмная тума́нность— тип межзвёздного облака, настолько плотного, что оно поглощает видимый свет, исходящий от эмиссионных или отражательных туманностей (как, например, туманность Конская Голова) или звёзд (например, туманность Угольный Мешок), находящихся позади неё.

Поглощают свет частицы межзвёздной пыли, находящиеся в наиболее холодных и плотных частях молекулярных облаков. Скопления и большие комплексы тёмных туманностей связаны с гигантскими молекулярными облаками (ГМО). Изолированные тёмные туманности чаще всего бывают глобулами Бока.

Такие облака обладают очень неправильной формой: у них нет чётко очерченных границ, иногда они приобретают закрученные змеевидные образы. Самые большие тёмные туманности видны невооружённым глазом, они выступают как куски черноты на фоне яркого Млечного Пути.

Во внутренних частях тёмных туманностей часто протекают активные процессы: например, рождение звёзд или мазерное излучение.

Пожалуй, самая известная[1] тёмная туманность — Конская Голова.



Чудес не бывает: из одной мухи можно сделать только одного слона.




Завершил строительство: Офисный Центр "Капитал"
 
niazДата: Вторник, 26.05.09, 21:39 | Сообщение # 6
Супер Рыболов
Группа: Администраторы
Сообщений: 37823
Статус: на рыбалке
Гала́ктикой называется большая система из звёзд, межзвёздного газа, пыли и тёмной материи, связанная силами гравитационного взаимодействия. Обычно галактики содержат от 10 миллионов (107) до нескольких триллионов (1012) звёзд, вращающихся вокруг общего центра тяжести. Кроме отдельных звёзд, и разрежённой межзвёздной среды, большая часть галактик содержит множество кратных звёздных систем, звёздных скоплений и различных туманностей. Как правило, диаметр галактик составляет от нескольких тысяч до нескольких сотен тысяч световых лет, а расстояния между ними исчисляются миллионами световых лет.

Хотя около 90% массы галактик приходится на долю тёмной материи, природа этого невидимого компонента пока не изучена. Существуют свидетельства того, что в центре многих (если не всех) галактик находятся сверхмассивные чёрные дыры.

Межгалактическое пространство является практически чистым вакуумом со средней плотностью меньше одного атома вещества на кубический метр. Возможно, что в наблюдаемой части Вселенной находится около 1011 галактик.

NGC 4414, обычная спиральная галактика из созвездия Волосы Вероники диаметром около 56 000 световых лет, находящаяся на расстоянии примерно в 60 миллионов световых лет.

Виды галактик

Существует три основных вида галактик: эллиптические, спиральные и неправильные. Во многих случаях очень удобным оказывается их несколько более подробное Хаббловское деление на подвиды. Хаббловское деление (или камертон Хаббла), охватывающее все галактики, основывается на их визуально воспринимаемом строении. Вследствие этого оно может не учитывать очень важные характеристики галактик — такие, например, как темп звёздообразования.

Наша галактика Млечный Путь, называемая также просто Галактикой (с заглавной буквы), является большой дискообразной спиральной галактикой с перемычкой, диаметром около 30 килопарсек (или 100 000 световых лет) и толщиной в 3000 световых лет. Она содержит около 3×1011 звёзд, а её общая масса составляет около 6×1011 масс Солнца.

Рукава спиральных галактик своим видом похожи на логарифмическую спираль — форму волн плотности галактического газа, отмеченную областями звёздообразования: именно молодые яркие звёзды ранних спектральных классов дают видимую картину спиральных рукавов.

Как и звёзды, спиральные рукава вращаются вокруг центра масс, но с постоянной (не зависящей от расстояния до центра галактики) угловой скоростью, что означает, что время от времени звёзды проходят сквозь спиральные рукава. Считается, что спиральные рукава являются областями повышенной плотности, или волнами плотности. Когда звёзды проходят сквозь рукав галактики, они замедляются, несколько увеличивая среднюю плотность рукава. Подобные «волны», состоящие из медленно едущих машин, можно увидеть на переполненных дорогах. В результате возникающей неоднородности гравитационного потенциала (≈ 10—20 %..) «догоняющий» межзвёздный газ разгоняется до сверхзвуковых скоростей и тормозится о «набегающий», образуя ударную волну со значительно повышенной, по сравнению со средней, плотностью. Рукава заметны потому, что повышенная плотность способствует формированию звёзд, из-за чего спиральные рукава населены молодыми голубыми звёздами.

Некоторые спиральные и неправильные галактики отличаются яркими звездообразными ядрами и сильными широкими линиями излучения в их спектрах. Первым обратил внимание на такую особенность и выделил галактики с этими признаками в отдельный класс в 1943 г. Карл Сейферт, по его имени они получили название сейфертовских галактик. Впоследствии оказалось, что такие галактики излучают в ультрафиолетовом и рентгеновском диапазоне; в настоящее время (2006) активность сейфертовских галактик объясняется присутствием в их ядрах сверхмассивных чёрных дыр, на которые происходит аккреция галактического газа.

В 2003 году Майклом Дринкуотером (Michael Drinkwater) из университета Квинсленда (University of Queensland) был открыт новый вид галактик, классифицируемый как ультракомпактные карликовые галактики.

Крупномасштабные структуры

Лишь немногие галактики существуют отдельно от остальных, сами по себе (они также известны как галактики поля). Структуры из примерно 50 галактик называются группами галактик, а более крупные, содержащие многие тысячи галактик в пространстве поперечником в несколько мегапарсек, называются скоплениями галактик. Скопления галактик зачастую находятся под влиянием одной гигантской эллиптической галактики, которая за счёт приливных сил со временем разрушает галактики-спутники и увеличивает свою массу, поглощая их. Сверхскоплениями называют гигантские собрания, содержащие десятки тысяч галактик, входящие в скопления, группы или расположенные отдельно. В масштабах сверхскоплений галактики выстраиваются в полосы и нити, окружающие обширные разрежённые пустоты. В больших масштабах Вселенная предстаёт изотропной и однородной. Наша Галактика является одной из галактик Местной группы, властвуя над нею вместе с Туманностью Андромеды. В Местной группе поперечником около одного мегапарсека, находятся около 30 галактик. Сама Местная группа является частью Сверхскопления Девы, главную роль в котором играет Скопление Девы (в которое наша Галактика не входит).

История

В 1610 году Галилео Галилей обнаружил, что Млечный Путь, который он решил исследовать своим телескопом, состоит из огромного числа слабых звёзд. В своём трактате 1755 года, основанном на работах Томаса Райта (Thomas Wright), Иммануил Кант предположил, что Галактика может быть вращающимся телом, которое состоит из огромного количества звёзд, удерживаемых гравитационными силами, сходными с теми, что действуют в Солнечной системе, но в больших масштабах. С нашего места внутри Галактики получившийся диск будет виден на ночном небе как светлая полоса. Кант высказал и предположение, что некоторые из туманностей, видимых на ночном небе, могут быть отдельными галактиками.

К концу XVIII столетия Шарль Мессье составил каталог, содержащий 109 ярких туманностей, вслед за которым появился каталог из 5000 туманностей Уильяма Гершеля. После постройки своего телескопа в 1845 году лорд Росс смог увидеть различия между эллиптическими и спиральными туманностями. В некоторых из этих туманностей он смог выделить и отдельные источники света, что придавало гипотезе Канта большую правдоподобность. Однако вопрос о том, являются ли эти туманности отдельными галактиками, оставался спорным до начала 1920-х годов, когда благодаря новому телескопу Эдвин Хаббл дал на него ответ. Он сумел разглядеть внешние части некоторых спиральных туманностей как скопления отдельных звёзд и определить среди них переменные-цефеиды. Это позволило ему оценить расстояние до этих туманностей: они находились слишком далеко, чтобы быть частью Млечного Пути. В 1936 Хаббл построил классификацию галактик, которая используется по сей день и называется последовательностью Хаббла.

Первая попытка определить форму Млечного Пути и положение Солнца в нём была предпринята Уильямом Гершелем в 1785 году при помощи тщательного подсчёта звёзд в различных участках неба. Используя усовершенствованный вариант метода, Каптейн (Kapteyn) в 1920 году сделал вывод о маленькой (диаметром в 15 килопарсек) сплюснутой галактике с Солнцем вблизи центра. Другой метод, использованный Харлоу Шепли (Harlow Shapley) и основанный на подсчете шаровых скоплений, дал совсем другую картину — плоский диск диаметром около 70 килопарсек с Солнцем, находящимся далеко от центра. Оба исследования не были точны из-за того, что не учитывали поглощение света межзвёздным газом в плоскости галактики. Современная картина нашей Галактики появилась в 1930 году, когда Роберт Джулиус Трумплер (Robert Julius Trumpler) измерил этот эффект, изучая распределение рассеянных звёздных скоплений, концентрирующихся в плоскости Галактики.

В 1944 году Хендрик Ван де Хулст (Hendrik van de Hulst) предсказал существование радиоизлучения с длиной волны в 21 см, излучаемого межзвёздным атомарным водородом, которое было обнаружено в 1951 году. Это излучение, не поглощаемое пылью, позволило дополнительно изучить Галактику благодаря доплеровскому смещению. Эти наблюдения привели к созданию модели с перемычкой в центре Галактики. Впоследствии прогресс радиотелескопов позволил отслеживать водород и в других галактиках. В 1970-х годах стало понятно, что общая видимая масса галактик (состоящая из массы звёзд и межзвёздного газа), не объясняет скорости вращения газа. Это привело к выводу о существовании тёмной материи.

Новые наблюдения, произведённые в начале 1990-х годов на Космическом телескопе имени Хаббла, показали, что тёмная материя в нашей Галактике не может состоять только из очень слабых и малых звёзд. На нём также были получены изображения далёкого космоса, получившие названия Hubble Deep Field и Hubble Ultra Deep Field, показавшие очевидность того, что в нашей Вселенной существуют сотни миллиардов галактик.

В 2004 году самой далёкой галактикой из тех, что когда-либо наблюдались человечеством, стала галактика Abell 1835 IR1916.

Этимология

Слово «гала́ктика» (от греч. γαλαξίας — млечный) происходит от греческого названия нашей Галактики (kyklos galaktikos означает «молочное кольцо» — как описание наблюдаемого явления на ночном небе). Когда астрономы предположили, что различные небесные объекты, считавшиеся спиральными туманностями, могут быть огромными скоплениями звёзд, эти объекты стали называть «островными вселенными». Но очевидно, что такое использование термина неуместно, поскольку понятие «Вселенная» включает в себя всё существующее. Поэтому термин вышел из употребления, и был заменён на термин «галактика», который теперь применяется ко всем подобным объектам.

Взаимодействия, столкновения
Основная статья: Взаимодействующие галактики

Орбитальный телескоп "Хаббл" в 2006 году сфотографировал взаимодействующие галактики, две из которых разрывают третью на части (в созвездии Южной Рыбы, удалены от Земли на расстояние в 100 миллионов световых лет) под воздействием гравитации "соседок". [1]

Столкновения галактик являются весьма распространенным явлением во Вселенной. Проанализировав 21902 галактик (сообщение начала 2009 года [2]), было выяснено, что практически все они в прошлом встречались с другими звездными скоплениями.

Также подтверждается предположение, что около двух миллиардов лет назад произошло столкновение Млечного Пути с другой галактикой [3].


Чудес не бывает: из одной мухи можно сделать только одного слона.




Завершил строительство: Офисный Центр "Капитал"
 
niazДата: Вторник, 26.05.09, 21:46 | Сообщение # 7
Супер Рыболов
Группа: Администраторы
Сообщений: 37823
Статус: на рыбалке
Спира́льная гала́ктика(обозначается S) — один из основных типов галактик, разновидность галактик в последовательности Хаббла, которые характеризуются следующими физическими свойствами:
значительный суммарный вращательный момент;
состоят из центрального балджа (почти сферического утолщения), окружённого диском:
балдж имеет сходство с эллиптической галактикой, содержащей множество старых звёзд — так называемое «Население II» — и нередко сверхмассивную чёрную дыру в центре;
диск является плоским вращающимся образованием, состоящим из межзвёздного вещества, молодых звёзд «Населения I» и рассеянных звёздных скоплений.

Пример спиральной галактики, Галактика "Вертушка" (Pinwheel) (объект списка Mессье 101 или NGC 5457)

Спиральные галактики названы так, потому что имеют внутри диска яркие рукава звёздного происхождения, которые почти логарифмически простираются из балджа. Хотя иногда их нелегко различить (например, во флоккулентных спиралях), эти рукава служат основным признаком, по которому спиральные галактики отличаются от линзообразных галактик, для которых характерно дисковое строение и отсутствие ярко выраженной спирали. Спиральные рукава представляют собой области активного звездообразования и состоят по большей части из молодых горячих звёзд; именно поэтому рукава хорошо выделяются в видимой части спектра.

Диск спиральной галактики обычно окружён большим сфероидальным гало, состоящим из старых звёзд «Населения II», большинство которых сосредоточено в шаровых скоплениях, вращающихся вокруг галактического центра. Таким образом, спиральная галактика состоит из плоского диска со спиральными рукавами, эллиптического балджа и сферического гало, диаметр которого близок к диаметру диска.

Многие (в среднем две из трёх) спиральные галактики имеют в центре перемычку («бар»), от концов которой отходят спиральные рукава. В рукавах содержится значительная часть пыли и газа, также множество звёздных скоплений. Вещество в них вращается вокруг центра галактики под действием гравитации.

Наша Галактика, как демонстрируют недавние (2005) наблюдения в ИК-диапазоне на Космическом телескопе имени Спитцера и многолетние радиоастрономические наблюдения, также относится к спиральным галактикам с перемычкой.

Масса спиральных галактик достигает 1012 масс Солнца.

Эллиптическая галактика (обозначается Е) — класс галактик с чётко выраженной сферической (эллипсоидной) структурой и уменьшающейся к краям яркостью. Они построены из звёзд красных и жёлтых гигантов, красных и жёлтых карликов и некоторого количества белых звёзд не очень высокой светимости. Отсутствуют бело-голубые гиганты и сверхгиганты. Нет пылевой материи, которая в тех галактиках, в которых она имеется, видна как тёмные полосы на непрерывном фоне звёзд галактики. Поэтому внешне эллиптические галактики отличаются друг от друга в основном одной чертой — большим или меньшим сжатием. Хаббл предложил показателем сжатия считать величину, которую можно вычислить, зная большую и малую ось её эллипса. Если галактика имеет форму шара, то её величина сжатия равна нулю, так как большая и малая оси эллипса равны. Если большая ось существенно больше малой, то иной класс, максимальный класс в этой системе — 10. Записываются эти данные так: E0, Е7, где E — это класс(эллиптическая), цифра — подкласс. Кроме того, эллиптические галактики могут сильно отличаться друг от друга по размеру.

Эллиптическая галактика ESO 325-G004

Линзовидные галактики – это промежуточный тип между спиральными и эллиптическими. У них есть гало и диск, но нет спиральных рукавов. Такие галактики обозначаются S0.

Доля эллиптических галактик в общем числе галактик в наблюдаемой части вселенной — около 25 %.

Ближайшая к нам эллиптическая галактика — карликовая галактика в созвездии Скульптора (ESO 351-30, подкласс — E0, радиус — 1505 световых лет)

Неправильные галактики— это галактики, не вписывающиеся в последовательность Хаббла. Они не обнаруживают ни спиральной ни эллиптической структуры. Чаще всего такие галактики имеют хаотичную форму без ярко выраженного ядра и спиральных ветвей. В процентном отношении составляют одну четверть от всех галактик. Большинство неправильных галактик в прошлом являлись спиральными или эллиптическими, но были деформированы гравитационными силами.

NGC 1427A, пример неправильной галактики.

Существует два больших типа неправильных галактик:
Неправильные галактики первого типа (Irr I) представляют собой неправильные галактики, имеющие намеки на структуру, которых, однако, не достаточно чтобы отнести их к последовательности Хаббла. Существует два подтипа таких галактик — обнаруживающих подобие спиральной структуры (Sm), и с отсутствием таковой (Im).
Неправильные галактики второго типа (Irr II) — это галактики, не имеющие никаких особенностей в своей структуре, позволяющих отнести их к последовательности Хаббла.

Третий подтип неправильных галактик — так называемые карликовые неправильные галактики, обозначаемые как dI или dIrrs. Этот тип галактик в настоящее время считается важным звеном в понимании общей эволюции галактик. Вызвано это тем, что они обнаруживают тенденцию низкого содержания металлов и экстремально высокого содержания газа и поэтому подразумеваются схожими с самыми ранними галактиками, заполнявшими Вселенную. Этот тип галактик может представлять местную (и поэтому наиболее современную) версию тусклых голубых галактик, обнаруженных в ходе миссии Hubble Ultra Deep Field.

Некоторые неправильные галактики являются маленькими спиральными галактиками, разрушенными приливными силами больших компаньонов.

В прошлом считалось, что Большое и Малое Магеллановы Облака относятся к неправильным галактикам. Однако позже было обнаружено, что они имеют спиральную структуру с баром. Поэтому эти галактики были переквалифицированы в SBm, четвертый тип спиральных галактик с баром.

Пекулярная галактика— это галактика, которую невозможно отнести к определенному классу в последовательности Хаббла, поскольку она обладает ярко выраженными индивидуальными особенностями. Название происходит от английского слова peculiar (необычный, особенный). Для этого термина не существует однозначного определения, отнесение галактик к этому типу может оспариваться.

Особенности строения галактик, которые считаются пекулярными, могут выражаться по-разному: искажения структуры (например, по причине взаимодействия с соседней галактикой), наличия пылевых полос, выбросов вещества и т.д.

Классическим примером пекулярной галактики является радиогалактика Centaurus A (NGC 5128).

В 1966 году был опубликован Атлас пекулярных галактик, в котором была собрана информация о различных пекулярных объектах.


Чудес не бывает: из одной мухи можно сделать только одного слона.




Завершил строительство: Офисный Центр "Капитал"
 
niazДата: Вторник, 26.05.09, 21:49 | Сообщение # 8
Супер Рыболов
Группа: Администраторы
Сообщений: 37823
Статус: на рыбалке
Квазар(англ. quasar — сокращение от QUASi stellAR radio source — «квазизвёздный радиоисточник») — класс внегалактических объектов, отличающихся очень высокой светимостью и настолько малым угловым размером, что в течение нескольких лет после открытия их не удавалось отличить от «точечных источников» — звёзд.

Впервые квазары обнаружили в 1960 году как радиоисточники, совпадающие в оптическом диапазоне со слабыми звездообразными объектами. В 1963 году голландский астроном Мартин Шмидт доказал, что линии в их спектрах сильно смещены в красную сторону. Принимая, что это красное смещение вызвано эффектом Допплера, возникшего в результате удаления квазаров, расстояние до них определили по закону Хаббла.

Очень сложно определить точное число обнаруженных на сегодняшний день квазаров. Это объясняется, с одной стороны, постоянным открытием новых квазаров, а с другой — некоторой размытостью границы между квазарами и другими типами активных галактик. В опубликованном в 1987 году списке Хьюитта — Бэрбриджа число квазаров 3594. В 2005 году группа астрономов использовала в своём исследовании данные уже о 195 000 квазаров [1].

Ближайший и наиболее яркий квазар (3C 273) имеет блеск около 13m и красное смещение z = 0,158 (что соответствует расстоянию около 2 млрд световых лет). Самые далёкие квазары, благодаря своей гигантской светимости, превосходящей в сотни раз светимость нормальных галактик, видны на расстоянии более 10 млрд световых лет. Нерегулярная переменность блеска квазаров на временных масштабах менее суток указывает на то, что область генерации их излучения имеет малый размер, сравнимый с размером Солнечной системы.

Галактика NGC 4319 и квазар Маркарян 205

Последние наблюдения показали, что большинство квазаров находятся вблизи центров огромных эллиптических галактик.

Квазары сравнивают с маяками Вселенной. Они видны с огромных расстояний (до красного смещения z=6,4), по ним исследуют структуру и эволюцию Вселенной, определяют распределение вещества на луче зрения: сильные спектральные линии поглощения водорода разворачиваются в лес линий по красному смещению поглощающих облаков[2].

Предположительно квазары представляют собой сверхмассивные чёрные дыры, на которые падает вещество [3].

Существуют каталоги таких объектов. Так, есть каталог Мессье, включающий в себя описание 110 объектов, или более полный Новый общий каталог, из почти 8000 объектов, или более специализированный Общий каталог галактик Уппсальской обсерватории. Подборки объектов из этих каталогов используются любителями для проверки их наблюдательных способностей и возможностей их астрономической техники. Например, каждый год проходит «Марафон Мессье», в котором участники за одну ночь должны увидеть на небе все 110 объектов этого каталога. Более сложным является конкурс «400 Гершеля», он предназначен для более мощных телескопов.


Чудес не бывает: из одной мухи можно сделать только одного слона.




Завершил строительство: Офисный Центр "Капитал"
 
lanaДата: Среда, 27.05.09, 12:45 | Сообщение # 9
Супер Рыболов
Группа: Пользователи
Сообщений: 1584
Статус: на рыбалке
тебе бы космологом-космоловом smile happy быть, а ты рыбалкой занимаешься
 
niazДата: Понедельник, 01.06.09, 12:28 | Сообщение # 10
Супер Рыболов
Группа: Администраторы
Сообщений: 37823
Статус: на рыбалке
lana, Мне это очень интересно! biggrin

А главное, как все это красиво, даже в сознание не укладывается красота космоса! good


Чудес не бывает: из одной мухи можно сделать только одного слона.




Завершил строительство: Офисный Центр "Капитал"
 
Форум » Непознанное рядом » Далекие миры » Далекий космос (иные миры)
  • Страница 1 из 2
  • 1
  • 2
  • »
Поиск:


Copyright MyCorp © 2024 |
frTread258
Для добавления необходима авторизация